A Carlitz–von Staudt Type Theorem for Finite Rings

نویسنده

  • APOORVA KHARE
چکیده

We compute the kth power-sum polynomials (for k > 0) over an arbitrary finite ring R, obtained by summing the kth powers of (T + r) for r ∈ R. For R non-commutative, this extends the work of Brawley–Carlitz–Levine [Duke Math. J. 41], and resolves a conjecture by Fortuny Ayuso, Grau, Oller-Marcén, and Rúa (2015). For R commutative, our results bring together two classical programs in the literature: von Staudt–Clausen type results on computing zeta values in finite rings [J. reine angew. Math. 21]; and computing power-sum polynomials over finite fields, which arises out of the work of Carlitz on zeta functions [Duke Math. J. 5,7]. Our proof in this case crucially uses symmetric function theory. Along the way, we also classify the translation-invariant polynomials over a wide class of finite commutative rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the von Staudt-Clausen's theorem associated with q-Genocchi numbers

Keywords: Genocchi numbers and polynomials q-Genocchi numbers von Staudt–Clausen's theorem Kummer congruence a b s t r a c t Recently, the von Staudt–Clausen's theorem for q-Euler numbers was introduced by Kim (2013) and q-Genocchi numbers were constructed by Araci et al. (2013). In this paper, we give the corresponding von Staudt–Clausen's theorem for q-Genocchi numbers and also get the Kummer...

متن کامل

Carlitz-Wan conjecture for permutation polynomials and Weil bound for curves over finite fields

The Carlitz-Wan conjecture, which is now a theorem, asserts that for any positive integer n, there is a constant Cn such that if q is any prime power > Cn with GCD(n, q−1) > 1, then there is no permutation polynomial of degree n over the finite field with q elements. From the work of von zur Gathen, it is known that one can take Cn = n4. On the other hand, a conjecture of Mullen, which asserts ...

متن کامل

Triangularization over finite-dimensional division rings using the reduced trace

In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...

متن کامل

NONLINEAR POST-BUCKLING ANALYSIS OF ISOTROPIC PLATES BY USING FINITE STRIP METHODS

ABSTRACT This paper presents the theoretical developments of two finite strip methods (i.e. semi-analytical and full-analytical) for the post-buckling analysis of isotropic plates. In the semi-analytical finite strip approach, all the displacements are postulated by the appropriate shape functions while in the development process of the full-analytical approach, the Von-Karman’s equilibrium equ...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016